772 Chemistry Letters 2001

Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS₂ and MoSe₂

Yiya Peng,[†] Zhaoyu Meng,[†] Chang Zhong,[†] Jun Lu,[†] Weichao Yu,[†] YunBo Jia,^{††} and Yitai Qian^{*†,††}
[†]Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R.China
^{††}Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P.R.China

(Received April 25, 2001; CL-010379)

Single-molecular-layer (SML) MoS_2 and $MoSe_2$ were synthesized by a hydrothermal method at 150–180 °C. XPS, XRD, ICP, and TEM were used to characterize the samples, and BET study indicated that the SML MoS_2 has very large surface area. And it was found that the SML MoS_2 has strong ability to catalytically decompose hydrazine monohydrate, just like platinum black.

Layered transition metal dichalcogenides ME_2 (M = Nb, Ta, Mo, W; E = S, Se) are composed of E-M-E layers and the layers are bound to each other only by van der Waals forces. Intercalating and subsequently exfoliating these dichalcogenides yield the corresponding single-molecular-layer forms of them.¹⁻⁴ Among the single layer transition metal dichalcogenides, SML MoS₂ has been extensively studied. The typical characteristic of SML MoS2 is that the diffraction originated from layer-stacking (002) absolutely disappears in the X-ray diffraction pattern (XRD), and XRD is the most effective method to identify SML MoS₂.^{3,5} According to Chianelli et al., SML MoS₂ has an XRD pattern different from those of the amorphous and poorly crystalline MoS₂.5,6 SML MoS₂ provides a typical material for studies of physical and chemical properties of two-dimensional, ultra thin film (<1 nm). In addition to the intrinsic interest in the properties of this matter, it appears that SML MoS2 may have useful applications, particularly in catalysis,⁷ in the formation of new inclusion solids^{8,9} and in the preparation of large area films made by stacking single layers on a substrate. SML MoS₂ is usually synthesized by the exfoliation method.³ However, this method is oxygen sensitive and most of the operations must be carried out in a dry and inert atmosphere. Recently, Afanasiev et al. reported that SML MoS₂ could be synthesized at low temperature under normal pressure, but the single layer must be stabilized by a surfactant.¹⁰ In their another work, they report XRD pattern quite like the XRD pattern of SML MoS2, but the sulfur content in their samples is too high.¹¹ Although MoSe₂ is isostructural with MoS₂, SML MoSe₂ is not reported still now. Here, we report a hydrothermal method to produce SML MoS₂ and MoSe₂.

A typical preparation procedure is as follows. Ammonium molybdate [(NH₄)₆Mo₇O₂₄·4H₂O], 1 g, elemental sulfur, 0.35 g (or elemental selenium, 0.89 g), and 8 mL of hydrazine monohydrate (86%) were put in Teflon-lined stainless steel autoclaves of capacity 25 mL. Distilled water was used to fill the autoclaves to 80% of the total volume. The autoclaves were maintained at 150–180 °C for 48 h and then were cooled naturally. The resulting dark-gray powders were filtered and washed with distilled water, diluted hydrochloric acid and ethanol, successively. The final products were dried in a vacuum at 40 °C for 3 h. The samples of the so-prepared MoS₂ and MoSe₂ were denoted as **M1** and **M2**, respectively.

X-ray photoelectron spectra (XPS) of the samples were recorded on a VGESCALAB MKII X-ray photoelectron spectrometer with an exciting source Mg Ka (1253.6 eV). The C 1s binding energy of carbon contamination occurs at 284.8 eV. The binding energies of Mo $(3d_{5/2})$ and Mo $(3d_{3/2})$ in the sample of M1 were 228.3 and 231.2 eV, respectively, and those for M2 were the same as M1. The binding energies of S $(2p_{3/2})$ and S $(2p_{1/2})$ in the sample of M1 were 161.7 and 162.7 eV, respectively. The binding energy of Se (3d) in the sample of M2 is 53.9 eV, which is characteristic binding energy of Se²⁻. All of these binding energies are consistent with the values of MoS₂ and MoSe₂ reported in literatures. ^{12,13} Analysis of the Mo (3d) and S (2p) or Se (3d) peak intensities gave S/Mo or Se/Mo atomic ratio of 2.05 to 2.1. Chemical analysis 14 of M1 gave S/Mo atomic ratio of 1.97 to 2.14, which is in agreement with the XPS measurements. The chemical composition of M2 was determined by ICP-AES (inductively coupled plasma-atomic emission spectra), which gave Se/Mo atomic ratio of 1.98 to 2.12. Thus, M1 and M2 should be MoS2 and MoSe2 and the sulfur content in M1 was lower than that of the samples prepared by Afanasiev et al.¹¹ XRD patterns of the samples were recorded with a MAX 18 AHF X-ray diffractometer (MAC Science Co., Ltd.). Figure 1 is the XRD pattern of sample M1, which shows only a broad weak envelope beginning at about 2θ = 30° and continuing out above 60°. The two maxima approximately locate at the 100 and 110 positions of bulk 2H-MoS₂.15 The missing of the 002 diffraction and the appearing of 110 diffraction indicate that the SML MoS2 is aggregates of S-Mo-S single layers and stacking of them has not taken place.^{5,6} This XRD pattern is in good agreement with that of previously reported SML MoS₂, ^{3,10} which indicates that **M1** is SML MoS₂. The XRD pattern of sample M2 was almost the same as that of sample M1 except that the two maxima moved a little to the lower angles. So, **M2** should be SML MoSe₂.

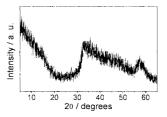
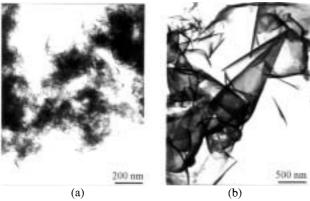



Figure 1. XRD pattern of the as-prepared SML MoS₂.

As the strong electron beam and high vacuum easily caused the monolayers to stack, 10,16 transmission electron microscope (TEM) is not a good instrument to identify and study pure SML MoS₂. But as an effective measure to observe morphology, the present samples were still observed by a Hitachi H-800 transmission electron microscope. Of course,

Chemistry Letters 2001 773

what was observed in TEM probably was stacked structure of single layers. TEM image (Figure 2a) shows sample M1 has crimpled rag-like morphology. And it was found that when the concentration of the reactants was decreased, the area of thin sheets became large and the degree of crimple decreased (Figure 2b). The morphology of M2 is similar to that of M1, and the same trend as that of M1 was also observed with the decrease of the concentration of the reactants. Electron diffraction pattern of the samples can not be obtained, which is consistent with the result of XRD. The surface areas of sample M1 and M2 were determined by low-temperature nitrogen adsorption (BET). The surface area of M1 was 180–240 m²/g, which is larger than that reported by Afanasiev et al.^{10,11} M2 had a relatively small surface area (70 m²/g) compared with M1.

Figure 2. TEM images of the as-prepared SML MoS₂ (a) prepared in normal concerntration, (b) in low concerntration.

It was found that freshly prepared SML MoS₂ (dried in air) could react with concentrated hydrazine monohydrate (86%) violently with the evolution of a large amount of ammonium. Sometimes the heat released was so large that the SML MoS₂ became glowing red. But if the SML MoS₂ had been boiled in water for more than one hour, the reaction would be weak or even, there would be no reaction. This is the first report about the phenomenon for MoS₂ and the phenomenon has been observed for platinum black by A. Purgotti and L. Zanichelli. 17 According to their report, this process is a catalytic decomposition of hydrazine monohydrate and the adsorbed oxygen induces the catalytic process. This phenomenon showed that the as-prepared SML MoS₂ have phenomenological similar catalytic ability at this point to platinum black. Considering MoS, is a widely used catalyst, ¹⁸ an in-depth study of the catalytic properties of the SML MoS2 is necessary and valuable, and it may be a kind of potential powerful catalyst at some aspects. Yet, the SML MoSe₂ reacted with hydrazine monohydrate weakly.

In conclusion, SML MoS₂ and MoSe₂ were synthesized by a hydrothermal method at 150–180 °C and characterized by XPS, XRD, ICP and TEM. BET study indicated that the SML MoS₂ has very large surface area and the SML MoSe₂ has relatively small surface area. The SML MoS₂ was found to have strong ability to catalytically decompose hydrazine monohydrate just like platinum black, which indicates that the SML MoS₂ may be a potential powerful catalyst.

Reference

- 1 D. W. Murphy and G. W. Hull, Jr., J. Chem. Phys., **62**, 9739 (1975).
- 2 C. Liu, O. Singh, P. Joensen, A. E. Curzon, and R. F. Frindt, *Thin Solid Films*, **113**, 165 (1984).
- P. Joensen, R. F. Frindt, and S. R. Morrison, *Mater. Res. Bull.*, 21, 457 (1986).
- 4 B. K. Miremadi and S. R. Morrison, J. Appl. Phys., 63, 4970 (1988).
- 5 K. S. Liang, R. R. Chianelli, F. Z. Chien, and S. C. Moss, J. Non-Cryst. Solids, 79, 251 (1986).
- 6 R. R. Chianelli and M. B. Dines, *Inorg. Chem.*, 17, 2758 (1978)
- J. Brenner, C. L. Marshall, L. Ellis, N. Tomczyk, J. Heising, and M. G. Kanatzidis, *Chem. Mater.*, 10, 1244 (1998).
- 8 H. Tachibana, Y. Yamanaka, H. Sakai, M. Abe, and M. Matsumoto, *Chem. Mater.*, **12**, 854 (2000).
- 9 J. Heising, F. Bonhomme, and M. G. Kanatzidis, *J. Solid State Chem.*, **139**, 22 (1998).
- 10 P. Afanasiev, G. -F. Xia, G. Berhault, B. Jouguet, and M. Lacroix, *Chem. Mater.*, **11**, 3216 (1999).
- I. Bezverkhy, P. Afanasiev, and M. Lacroix, *Inorg. Chem.*, 39, 5416 (2000).
- 12 R. L. Chin and D. M. Hercules, J. Phys. Chem., 86, 3079 (1982).
- 13 C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder, in "Handbook of X-ray Photoelectron Spectroscopy," ed. by G. E. Muilenberg, Perkin-Elmer Corporation, Minnesota (1979).
- 14 J. H. Karchmer, in "The Analytical Chemistry of Sulfur and its Compounds," Wiley-Interscience, New York (1970), Part 1, p 105.
- 15 JCPDS Card No. 37-1492.
- 16 J. Heising and M. G. Kanatzidis, J. Am. Chem. Soc., 121, 638 (1999).
- 17 J. W. Mellor, in "A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Nitrogen," Longmans, Green and Co., London, New York, and Toronto (1958), p 317.
- 18 R. R Chianelli, Catal. Rev. Sci. Eng., 26, 361 (1984).